

A new **rectifier topology** with a unity power factor, introducing a new current mode, is presented.

- No need for a current control loop (inherent)
- It is mathematically proven that the input impedance behaves as a constant resistor.
- Inherent soft switching occurs during the entire line cycle.

Abstract

Topology and Switching Waveforms

A Rectifier with Inherent Unity Power Factor

 $\gamma = \frac{\Gamma_{11}(V_{in} + 2V_C) + \Gamma_{12}V_C}{-\Gamma_{11}(V_{in} + 2V_C) + \Gamma_{12}V_C}$ $d\lambda_1^j = L_1di_1^j + Mdi_2^j = V_1^jdt^j$ $d\lambda_2^j = Mdi_1^j + L_2di_2^j = V_2^jdt^j$ 11 \blacksquare 12 | \blacksquare 12 | \blacksquare 2 21 $\frac{1}{22}$ $\frac{1}{22}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $(\Gamma_{11} \quad \Gamma_{12}) \qquad 1 \qquad (\L_2 \quad -M)$ $\Gamma = \begin{pmatrix} 1 & 1 \\ \Gamma_{21} & \Gamma_{22} \end{pmatrix} = \frac{1}{L_1 L_2 - M^2} \begin{pmatrix} 2 & 1 \\ -M & L_1 \end{pmatrix}$ L ² $-M$ L **,** L ₀ $-M$ ² M ² M ² L Flux Linkage of *L1* and *L2* in each interval 1 $\frac{1}{2}$ $\begin{pmatrix} -I_{\beta} \end{pmatrix}$ $\begin{pmatrix} V_{in} + 2V_{\beta} \end{pmatrix}$ $\begin{vmatrix} P & P \\ I & -I \end{vmatrix} = \Gamma \begin{vmatrix} m & -1 & C \\ V & V \end{vmatrix}$ $\left(I_{g1}-I_{g2}\right)$ $\left(\begin{array}{c} -V_c\end{array}\right)$ *in C g*¹ g^2 / C I_{α} $(V_{\alpha}+2V_{\alpha})$ *t* $I_{c1} - I_{c2}$ | $-V_{c1}$ β $j = 1 \rightarrow \begin{array}{cc} |I \cap I \cap I \cap I \end{array}$ $\begin{array}{cc} |I \cap I \cap I \cap I \end{array}$ 2 $\frac{1}{2}$ $\frac{1}{2}$ 2 $\left(\frac{\mathbf{I}}{\mathbf{I}} - t_{\beta} \right)$ 2 $\begin{pmatrix} I_{\alpha} \end{pmatrix} - \begin{pmatrix} V_{in} - 2V_{\alpha} \end{pmatrix}$ $\begin{vmatrix} a & -I \\ I & -I \end{vmatrix} = \Gamma \begin{vmatrix} m & -2 & C \\ V & -1 & C \end{vmatrix} \left(\frac{1}{2} - \frac{1}{2} \right)$ $(I_{h2}-I_{g1})$ $-V_c$) *in C* $h2 \rightarrow g1$ \rightarrow \rightarrow C I_{α} / $(V_{\alpha} - 2V_{C})$ *T t* I_{μ} ² $-I_{\mu}$ ¹ \qquad $-V_{\mu}$ α β 1 $\binom{1}{2}$ $\left(\frac{V}{m} - 2V_C\right)$ *h*¹ *h* 2 / **c** / I_{α} $(V_{\alpha}-2V_{\alpha})$ *t* $I_{\mu} - I_{\mu}$ $\qquad \qquad V_{\mu}$ \qquad \qquad α \blacksquare α and α $\begin{pmatrix} -I_{\alpha} \end{pmatrix}$ – $\begin{pmatrix} V_{in} - 2V_{\alpha} \end{pmatrix}$ $\begin{vmatrix} a & b \\ a & b \end{vmatrix} = \Gamma \begin{vmatrix} m & c \\ a & c \end{vmatrix} t_{\alpha}$ $\left(I_{h1}-I_{h2}\right)$ $\left(V_c\right)^{a}$ 2 $h1$ 2 $\left(\frac{\tilde{\hphantom{m}}}{\tilde{\hphantom{m}}}-t_{\alpha}^{}\right)$ 2 $\begin{pmatrix} I_{\beta} \end{pmatrix}$ $\begin{pmatrix} V_{in} + 2V_{C} \end{pmatrix}$ $\begin{vmatrix} p \\ I & -I \end{vmatrix} = \Gamma \begin{vmatrix} m & -c \\ V & \end{vmatrix} \left(\frac{1}{2} - \frac{1}{2} \right)$ $\left(I_{g2}-I_{h1}\right)$ $\left(V_c\right)$ *in C* g ² h 1 / \vee *C* I_{β} \qquad \q *t* $I_{\alpha2} - I_{\mu1}$ | $V_{\alpha2}$ β $j = 4 \rightarrow$ $\begin{array}{cc} \begin{array}{c} \end{array}$ $\begin{array}{cc} \end$ $j = 2 \rightarrow$ $j = 3 \rightarrow$ 1 () () 2 2 2 2 *in* **IP IP CONTRACTE Sey ringer** 1,
 $d\lambda_i^j = L_i di_i^j + Mdi_2^j = V_1^j dt$
 $d\lambda_2^j = Mdi_1^j + L_2 di_2^j = V_2^j dt$
 $\frac{1}{-M^2}\left(\frac{L_2}{-M} - \frac{M}{L_1}\right)$
 $\left(\frac{V_m + 2V_c}{-V_c}\right)_{t_\beta}$
 $\left(\frac{V_m - 2V_c}{-V_c}\right)_{t_\beta}$
 $\left(\frac{V_m - 2V_c}{-V_c}\right)_{t_\gamma}$ **Priori With Inherential**

Integral *I*, Heinz Seyringer¹,

<u>Integral *I*</u>, Heinzi $d\lambda_i^j = L_i dt_i^j + M dt_i^j = V_i^j dt^j$

 I each interval
 $\begin{pmatrix} d\lambda_i^j = L_i dt_i^j + M dt_i^j = V_i^j dt^j \\ d\lambda_i^j = M dt_i^j + L_j dt_j^j = V_i^j dt^j \end{pmatrix}$
 $\begin{pmatrix$ **i In the Fe of**
 Seyringer¹, ...,
 $d\lambda_1^j = L_1di_1^j + Mdi_2^j = V_1$
 $d\lambda_2^j = Mdi_1^j + L_2di_2^j = V_2$
 $\frac{d\lambda_2^j}{dt} = \frac{Id_i^j}{t} + \frac{Id_i^j}{t}$
 $\frac{d\lambda_2^j}{dt} = \frac{Id_i^j}{t} + \frac{Id_i^j}{t}$
 $\frac{d\lambda_2^j}{dt} = \frac{Id_i^j}{t}$
 $\frac{d\lambda_2^j$ Average forward current

12 $\frac{8}{2}$ = 8 f_a $\sqrt{L_{1}L_{2}} \frac{(1-k^{2})}{2}$ $f_{in} = \frac{\sigma}{-\Gamma_{12}T} = 8f_{s}\sqrt{L_{1}L_{2}}\frac{\sqrt{1-\Gamma_{2}}}{l}$ $R_{in} = \frac{1}{\sqrt{2\pi}} = 8f_s \sqrt{L_1}L$ *T k*

(condition for preventing zero-crossing distortion)

2 2 V_{in} ^{*In*} \leq V_c (condition for Unity PF and preventing DCM) 2) $\frac{1}{M}$ $\frac{m_1}{2}$ \leq V_c (cond *L* 2 3) 2 < $\frac{M}{\epsilon}$ (condit *L* 2 $\frac{in}{ } \leq$ *C V* 1) $\frac{|v_{in}|}{|v_{in}|} \leq V$ (condition for preventing CCM)

Operational Conditions

Power Electronics Team | Photonics Group V-Research GmbH, Stadtstraße 33, 6850 Dornbirn, Austria

Analysis